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A number of papers are devoted to the investigation of the state of stress in a half-plane 
or in a plate with elastic reinforcement. 

The first paper in this area belongs to Melan [l]. He gave the exact solution of the 

problem for a half-plane (or a whole plane) reinforced by an infinitely long bar to which 
a concentrated force is applied along its axis. Subsequently Buell @],Koiter 1-33 and 

Brown [4] examined the problem of determination of contact stresses acting between a 

plate and a semi-infinite bar for different loads applied to the end of this bar. 
Reissner was the first to examine the problem of determination of contact stresses in 

a half-plane with elastic reinforcement of finite length, and he reduced the solution of 

problem to an integro-differential equation analogous to the Prandtl equation in the the- 

ory of a wing with finite span. However, he did not present a solution of this problem. 
Pflueger obtained the solution of this problem for the case when the upper surface of the 

elastic cover plate which is joined to the semi-infinite plate is described by an elliptic 
arc. 

Later Benscoter [6] studied the field of stresses in a plate with an elastic reinforcement 
of finite length for the case where two concentrated forces of equal or opposite direction 
are applied to its ends. He solved the initial integro-differential equation of the problem 
by the numerical method of Multhopp. 

The work of Kalandiia [i’] is devoted to the proof of convergence of the method of 
Multhopp in its application to an equation of the Prandtl type in the theory of a wing 
with finite span. 

Bufler [8] studied in detail the state of stress in a half-plane (or a whole plane), over 
a finite section of the free surface (or, correspondingly the inside) of which an elastic 
cover plate of uniform thickness was attached, under various forms of loading and tem- 
perature of influence. For solving of the initial integro-differential equation, which 
served for the determination of contact stresses between the elastic cover plate and the 
half-plane, he applied the method used by Carafoli [9 and lo] in the theory of a wing 
with finite span. 

It should be noted here that in all cases mentioned above where the elastic cover plate 
has a finite length, the obtained solutions are approximate and in addition. these solu- 
tions do not always present the possibility to elucidate clearly those peculiarities which 
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characterize the state of stress of the elastic reinforcement in the vicinity of its ends. 

In this paper the contact problem is examined for a half-plane with elastic reinforce- 
ment of finite length and uniform thickness. The solution of this problem is reduced to 
an integro-differential equation of the Prandtl type which allows to determine contact 

stresses along the line of attachement of the elastic cover plate to the half-plane. The 
exact solution of this equation is presented showing clearly those peculiarities which 
characterize the state of stress in the vicinity of the ends of the elastic cover plate. 

1. Formulation of the problem. The brofo equation rnd itc 
solution. On a finite section [ - a, a] of its free surface let the half-plane be 

reinforced by an elastic reincorcement in the form of a welded (or glued) cover plate of 
constant thickness h (Fig. 1). Let us determine the magnitude and the law of distribution 

of contact stresses along the line of attach- 

ment of the elastic cover plate to the half- 
plane for the case when a concentrated force 

P directed along the axis of the cover plate 
is applied to one of the ends of the cover 
plate. Let us assume that the bending stiff- 

Fig. 1 
ness of the cover plate is negligibly small 
and therefore we can neglect the pressure of 

the cover plate on the half-plane, i.e. to assume that a,(l) z 0. 
In other words we shall assume that the cover plate is in a uniaxial state of stress. We 

shall designate stresses, displacements and deformations in the cover plate by the super- 
script (1) and in the half-plane by the superscript (2). The physical constants of mate- 

rials of the cover plate and the half-plane will also be designated in an analogous man- 
ner. 

From the equilibrium equation for the element of the cover plate we have 

6,(1)(X) = + 1 d’)(s)ds (1.1) 
-a 

Here o,(t) is the normal stress acting in an arbitrary cross section of the cover plate 

and T(t) (r) is the tangential stress acting on the cover plate along the line of its attach- 
ment with the half-plane. 

Further, taking into account that a,(l) z 0, we have in accordance with Hooke’s law 
x 

S 
d’) (s) ds 

--a 

Here El is the modulus of elasticity of the cover plate material, h is its thickness 
and ~(1) is the displacement along the z-axis of points of the plane of junction of the 
cover plate with the elastic half-plane. 

On the other hand it is known [ll] that the strain eXf2) of the elastic half-plane is 
expressed through the following formula when tangential forces ~(2) (x)are acting on a 
finite section [- a, +a] of the free surface 

duf2) 
+a 

e,(2) = - = 2 (1 - v2) 
dx n& c r(2) (s) 8-Z (1.3) 

-ta 
Here 24(s) is the displacement of points of the free surface of the elastic half-plane 
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along the z-axis, r@) (a) is the tangential stress acting on the elastic half-plane along 
the line of its contact with the cover plate ; E2 is the modulus of elasticity of the mate- 

rial of the half-plane ; v is Poisson’s ratio. 
The condition of complete contact of the elastic cover plate with the half-plane in 

this case can be presented. ia one of two forms : 

(A) ~(1) = u(a), (B) 
du(') 
dz = ‘$ (14 

for y = 0 and - a < 5 & a, i.e. on the line of contact of the elastic cover plate with 

the half-plane. 

We note that the conditions (A) and (B) differ from one another only by a constant of 
integration which expresses rigid displacement of the half-plane in the direction of the 
t+axis and does not have an effect on the state of stress condition of the half-plane. 

Utilizing relationships (1. ‘2) and (1.3) and condition (B) we obtain 

Here 

he(x)+Tp’(5) -&=o (l-5) 
--(I 

x 

0’ (4 = -c (4, cp (5) = s r (8) ds, T (3) = r(l) (5) = - r(2) (5) 
--a 

Here T (5) is the contact stress acting between the elastic cover plate and the half- 
plane, and 

(l.G) 

In this manner the solution of the contact problem for the half-plane with the elastic 
reinforcement of finite length is reduced to the solution of the integro-differential equa- 

tion (1.5) for boundary conditions 

cp (-4 = 0, cp (a) = - P (1.7) 

Let us proceed to the solution of the integro-differential equation (1.5). First of all 
we transform the equation to the form 

(l-8) 
-a 

Here the integral in the right side should be understood in the sense of the Cauchy 
principal value. 

Using the transformation formula Cl’21 we shall have 

cp’ (5)‘= z (z) = vag_3 f s +’ I/aa,szcp (s)dr + cl 
S-2 va2 (1.9) 

-a 

In this equation that branch of radical I/cl - za is taken which acquires positive 

values on the upper side of section (-o, -l-(t) and t?, is some constant which is subject 
to determination. 

The solution of the integro-differential equation (1.9) will be sought (assuming that 
this is possible) in the form of a series 

cp (z) = (10 + k$zk ( p>” 
k=l 

(1.10) 

After substitution of (1.10) into (1.9) we obtain 
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T(S) = 
+a I/al ds * )1&+ va&s_a S S--I + ,&,gQJkW (1.11) 

where the integral 

(1.12) 
-a 

should be taken in the sense of the Cauchy principal value, 
Applying the formula of Sakhotskii and Plemel [X2.] we write the integral JI, (z) in 

Here z = z + ie where E + 0, always remaining positive. 

Let us further examine the integral taken over a contour r (Fig. 2) : 

I*(z) = +s (+)” qy”’ ds (1‘ = 1-a + I’n, I’a = ~a(‘) + ~a(*)) (1.14) 
r 

Let us designate the integral taken over contour I’= by Pk (z),i. e. 

Pk(z) = $ s (+)” vaa~& 
ra 

(1.15) 

Then according to Cauchy’s formula we shall have 

Now let us compute the integral over the contour r~ (1 s 1 > a), entering into rela- 

tionship (1.16). 

Fig. 2 

First of all let us note that the radical in the 
numerator of the function under the integral 
acquires on both sides of the section (--a, +a) 

values which differ only in sign in the geometri- 
cally corresponding points ; in addition it should 
be kept in mind that for S> a the radical, 
<yrY; Jf/s2_ where v s2 - aa > 

or 

Now let us use the expansion 

(i- $)” = ‘I;m (- l)“c,,,“‘(+>” (1.47) 

“CO 

Here cl,,@) is the coefficient of expansion for 

~als~<l. 
Then we can give to the integral over rnwhich enters into relationship (1.16) the 

form 

&a+ j “F(--i)‘cy,“’ (+)“‘(+)“” +a (1.18) 

rR V=o 
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Let us examine the sum which is under the integral sign in the right side of (1.18) and 
let us designate it through v 

Y=o) 

v = 2 (_ 1)‘C*,,“’ $ ( > Ir+l-lv 
“=O 

(1.19) 

It is apparent that positive powers (s / a) in the sum (1.19) will occur for 

k + 1 - 2v > 0, v<v*, v* = E P/s (k $ I)1 
Here E [ l/s (k + I)] is an integral part of */s (k + I). In this manner we shall have 

v = “i’(_ *pq,o (q+-” + “; (_ qq#w (gk+- (*:20) 

Y=R v-v,+1 

In the first sum of this relationship we repalce the index v by p = k c 1 - 2~; 

then we will have 

p=k+i fen v=o, ~*=kf~-2E[‘/,(k+1)] for v=v,(I.ZI) 

It is apparent that if k is even. then II* = 1, and if k is uneven, IL* = 0. Further, 
keeping .in mind that v = l/s (k + 1 - p), the first term of the relationship (1.20) 
can be presented in the form 

i (--*)“cV,“’ (,)‘+l*” = ‘$* (_I)'l.(k+l-r)c~~[k+l-p])(~)P (1.22) 
“=o p=o: 1 

where the asterisk above the symbol of summation indicates that the index of summation 

takes either even or uneven values. Let us now examine the second term in relationship 

(1.20) co 

"=E I'/,(k+l)]+l 

(- I)“(&,‘” (+>a._ @+I) 

Here we also introduce a new index of summation p = 2v - (k + 1); then we 

will have 
p=oO fort v = 00 

p* = 213 [‘/a (k + I)1 - (k - 1) for, v= V+ + 1 = E [‘/a (k + i)] + i 
(1.23) 

It is apparent that if k is even, then pL* = 1, and if k is uneven then CL* = 2. We note 
that v = l/s (p +-k + I); then the second term of relationship (1.20) can be presen- 
ted in the form 

i 
“=“.+l 

(- l)“cd”’ (+)-” = ;* (_ l)‘h(k+l+I++~ [k+l+pl) (+)” (1.24) 
p=2; 1 

NOW the numerator of the function under the integral in (1.18), i.e. expression (1.20) 
can be represented in the form 

k+l 
‘1, (k+l-)r),.+;/. [k+l-PI) , 

p=o; 1 

+ $4 ‘/s(k+l+~)cj;‘[k+l+~l) 

+=a; 1 
(1.25) 

Substituting Expression (1.25) into the right side of integral (1.18) we obtain 
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On the basis of the residue theorem we have 

(1.27) 

(1.28) 

Substituting <values of these integrals into relationship (1.26) we find 

Then, using relationship (1.16) and (1.29) we obtain for Ph (2) the following exPres- 

sions : 

P,(z) = 2f/a2- 2’ 
( ) 
$ k + 2ia “3 (_ l)l/~(ktI-II)c$~ CIr+I+J) (5) (1.30) 

p=o; 1 
But on the other hand according to (1.15) we have 

P, (Z) = $ 

Here the first integral is taken along the upper side of section Ya(‘) and the second 
integral along the lower side of the seqion yG(2) (Fig .2 It is apparent that integrals ) ( ’ 
with respect to small regions C,,’ and Cp”tend to zero for p + 0), consequently 

+a 
P,(z) = 2 1 (&)k y;-” ds- +I= (+) k vsy ds (1.32) 

Here that branch radii:1 l/U2 - 2, 
+a 

is selected which remains positive on the upper 
side of the section (- u, a) and by the same token takes on negative values on the 
lower side. 

In this manner we have according to (1.32) 

Pk (z) = -$- 7 (+)” ‘;L;“’ ds (1.33) 

Now using relationship (1.33) we caL;resent Expression (1.13) for Jr (z) in the form 

J,(Z)=-v/as-Z2 + k++Pk(z) 
( > 

(1.31) 

Here Pk (x) is understood to mean the limiting value on the upper side of the section 

(- a,+ a) of the function P,, (z) determined by the relationship (1.30) or (1.33). 
the value Pk (x) determined by the relationship (1.30) into (1.34) and 
u2 - z2 (~/a)~, we obtain the following Formula : 
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Now let us turn to Expression (1.11) for the contact stressrl: (8). First of all we note that 

the integral enteiing into this equation for a0 is 

It is obtained directly from Eq. (1,35) for k = 0, p = 1 and C,,,@l E 1. 

Substituting values of integrals ,Ti (z) and Jo (z) determined from relationships( 1.35) 
and (1.36) into ECL& 11) for the contact stress ‘F (&we obtain 

We introduce the notation 

&* =.-~ y * ‘0 = 2(i ::s) &h 

Then Formula (1.37) for contact stress can be written in the form 
CW 

r(s}=.- i_i )‘lrW+l-L-)r) c,,p@+l-PI) (+)’ + “j- baoz 

aa- 2% 

Admitting that a transposition is possible in the double sum in Eq. (1.38), after some 
transformations we bring the latter to the form 

(1.39) 

7(zj=u s* ak. (__ $~zWl-l”’ ~,,,WW-~ll + +-at; 

k==Nt$ 
Here 

i 

1 

N(p)= ’ 

for p=O 

2 for p = i (1.40) 

p-i for p>2 

and the asterisk to the right of the summation sign indicates that the index of the inter- 
nal sum assumes either even or odd values. 

Let us write 
(1.41) 

fi-NW 

Then Eq, (1.39) for the contact stress -c (z) can be presented in the form 

(1.42) 

As is evident from this equation, those singularities are clearly brought out in it which 
are inherent to contact stresses in the vicinity of the ends of the elastic cover plate. 

In this manner the magnitude and the distribution law of the contact stress z (x) acting 
in the plane of contact of the elastic cover plate with the half-plane , is completely 
determined either by Eq. (1.38) or (1.39) or (1.42), if the values of the coefficients uk 
or B, are known. 

It is shown below that the determination of coefficients irk (or BPj Is reduced to the 
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solution of some infinite system of linear equations with bounded free terms. 

Simultaneously it is proved that for 

this infinite system of linear equations turns out to be completely regular and for.h,a>l 
quasi-completely regular and as is known [13] from the theory of regular infinite systems 
of linear equations, in the case of bounded free terms the unknowns are determined with 

any required accuracy. 

2. Derivation rnd rnaiytic of an fnflnita 8yrtem of line&r aqua- 
tion#. First of all we transform Eq, (1.39) for the contact stress ‘c (z),representing it 

in the following form: 

7 (5) = - As 5 ; (4)” IL,!” B, (+)2n+’ + 
n=o p=o 

+ [4 - Loa0 (+)I nzo (-I)%,,‘” (g 

This expression is obtained directly from Eq. (1.39), if we substitute in it 

(2.1) 

where Cd,,@) is the coefficient of expansion. 
Now wee write the first sum entering into Expression (2.1) substituting in it the index 

of summation %a + p by m. Then we shall have 

(2.3) 

Further, changing the order of summation we obtain 

I, = _ A0 fj (+r $* (_,)“9(m-)r) c_,,r(lMm+l) B, (2.4) 
m-0 p=o; 1 

Substituting the index of summation 2n by m in the second sum which enters into 

Expression (2. l), we reduce it to the form (2.5) 

I 0 = J$ s* (-lprn C_,ij”rm) (+->” _ hoa z* (_l)‘:t(m-1) c_,,t(‘Mm-r]) (+r 
m=o m=l 

Now let us represent the contact stress t (CC) in the form of a sum of two terms: of 
symmenic T+ (5) and skew-symmetric Z- (t) stresses, i.e. z (5) = z+ (x) + r- (5). 
It is apparent that the symmetrical part of the contact stressr+ (s)will depend only on 
even powers of (Z i ~)“,and the skew-symmetric part only on odd powers (z / u)~. 

Thus for even m’ we .shall have 

7+ (z) = _ ho $j* (_5)m { ‘5’ (_ 1)‘,9(m-M c_,,l(tl.P+l) B, _ 

m=o p=o 

- 2 (- q”*m C-,/pm) } 
(2.6) 
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for odd m 

r (5) = _ ho 

+ ug (_I )‘h(m-1) c_,,t(‘:rlm-1:)’ 
j 

On the other hand according to (1.10) we have 

(2.7) 

Consequently 

rp(z)=ao+ : uk(gk P-9 
k=l 

7’(2)=@(z)= 5 fm+t(;+i)($)m, 1+1<1 (2.9) 
m-o 

In this case the singularity at the ends of the elastic cover plate (5 = F a) is taken 

care of either by Eq. (1.36) or (1.39) or (1.42). 
Let us separate the even and odd parts in Expression (2.9) ; for even m we obtain 

(2.10) 

and for odd m we shall have 

(2.11) 
m=l 

Further, comparing Expressions (2.6) and (2.10) and also (2.7) and (2.11) we find 

(2.12) 
m+i 

urn+1 7 = _ ho { $* (--1 )‘i~(m-~) (=_,,y’*[m-al) B, _ _!& (_ l)“rm c_,,;‘hm)} 

p=o 

m+l 
%+, --Q- = - ho [ 3 (-l)“r(m-p) C_,,,(“tr(m-pJ) B, + ao (_l)‘/a(m-1) c_,,,(V,[m-I)]} 

p=1 

(2.13) 
In Eq, (2.12) m is even and in (2.13) it is odd. 
In this manner the system of equations (2.12) contains only coefficients nk with odd 

index k, which linearly depend on an arbitrary constant C,and determine adcording to 
Eq. (2.11) the contact stress t- (z) in the case of skew-symmetric loading of the elastic 

cover plate. The system of equations (2.13) contains only coefficients ah with an even 
index k which also depend linearly on an arbitrary constant a,, and determine according 
to Eq. (2.10) the contact stress V (z) in the case of symmetric loading of the elastic 
cover plate. These arbitrary constants C, and ao. are determined from boundary condi- 

tions (1.7). 
It is appropriate to note here that each of these loadings is of independent interest 

because it corresponds to a definite character of deformation of the half-plane with a 
cover plate. 

In Eqs. (2.12) and (2.13) let us now transform sums which contain coefficients B, 
using in this connection relationship (1.41). Designating this sum byd,,we shall have 

A m = i* (_l)“‘(m-p) ~_,,,Wdm-~l) B, (2.14) 
p=o; 1 
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Substituting expression for Bk, from relationship (1.41) into (2.14). we obtain 

A, = 2 +, m(_qW’W’) c-&‘WWl) 2 ep+l, k a, (__l)‘r,(k+l-N c,,!‘,IP+W 

W k=NW 
Here _ 

(2.15) 

i 
a,, = 

for fr and m with the same parity 
0. for CI and m with different parity 

(2.16) 

1 for p=O 
2 for p = 1 

-i for p 2 2 
(2.17) 

IL 
Changing the order of summation in (2.15) we can obtain 

m-1 k+l co m 

(2.18) 
k=l p=o k=m P=O 

where expressions for fC~ (m) are determined by Eqs. 

fPk (m) = akeP, m (-i)‘lr(m-P) c_II~‘afV’)ec+I, k (-~)“‘(k+l-r) CSj~tk+l-PJ) (2.19) 

Let us now separate in Expression (2.18) for the sumA,its even and odd parts. The 
even part will be denoted by A,,,+ and the odd part through A ,,,‘. 

Further, let us introduce the following notations : 
min (k&m) 

gk,m’ 
2 (__l)l.t(m-P) c_,;,(lUm-PI) (-l)W-P) c,,l(lll[klpI) (2.a01 

p=o; 1 

Then by virtue of relationships(2.18). (2.19) and (2.20) we obtain 
m-1 1(+1 

g* a, x* (_~fMm-p) c_,,J'Mm-rl) (_q'Mk+l-d c,,~[k+t-PI) + 

(2.21) 
Am+ = 

p=o 

+ k=i+l ak 2 (_l)‘/s(m-~) c_,,;‘Mm*l) (_l)W+l-N C,,r((ldk+i-d) = f$’ argk+l, m 
I*=0 k=l 

Here m is even, k is odd and gk+t,m is determined from Eq. (2.20). Further, 

m-1 k+l 

AI- = 
g* &k 2’ (__1)‘ldm-M c_,,~[m-l~l) (_l)‘Wl-p) c,,I(“dktW]) + (2.22) 

lr-1 
co 

+ k=zil a, $j* (_l)“r(m-~) c_,,l(“~lm-PI) (__l)Wk+W c,,,PMk+1-pi) = $* =kgk+,, m 

p=1 k-2 

Here m is odd, k is even, and g,,.+lrm is also determined from Eq. (2.20). 

NOW substituting according to (2.14) values of Am+ and A,,.,- from relationships 

(2.21) and (2.22) into Eqs. (2.12) and (2.13) we reduce then to the following form: 

m+l 
am+1 7 = - ho { 3 a&k+l, m - & (-l))“am c-~l~m’} (2.23) 

k=l 

00 

m+1 
am+1 a = - A0 8* akgk+l.m + a0 (-1) Wm-1) c_,,~Wm-11) (2.24) 

k=a 
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In Eq. (2.23)mis even (m = 0, 2, 4, 6 ,,..) and k is odd and in Eq. (2.24) m is odd 

(m = 1, 3, 5, 7,...). and k,is even. 
In this manner the problem of determining unknown coefficients al, (k = 1, 2, 3,. . .) 

(or Bk),. entering into Eqs. (1.38). (1.39) or (1.42) for determination of contact stress 
7 (z) was reduced to the solution of an infinite system of linear algebraic equations 

(2.23) and (2.24). 
In this connection, coefficients a, with odd index k , which are expressed through an 

arbitrary constant C,, are determined from the system of equations (2.23). From the sys- 

tem of equations (2.24) coefficients a, with even index k, which depend on the arbitrary 
constant a,, are determined. Both of these arbitrary constants C, and asenter separately 
in the form of a factor into the corresponding expressions for ak with odd indices and are 

determined from boundary conditions (1.7). 
Further, following the method developed by Sherman in [14] we shall prove that the 

infinite system of linear equations (2.23) and (2.24) is completely regular if &a < 1 
and quasi-completely regular when X,,a> 1. 

For this purpose we first of all transform our system into a form which is convenient 

for analysis, that is we write it in the form 

where m = 0, 2, 4, 6, . . . , k # m + 1 and 

%tl 1 ~~+~“g~2,m~=-~.{~~akgk+l,m+a~(-1~’~1)c_*,~cm~~~, 
where m = 1, 3, 5, 7, . . . and k.+ m + 1. 

In order to prove that these systems sre completely regular it is necessary for us to 
evaluate the followine sums: 

00 

z* Igktl,m 1 for k+mfl; m=0,2,4,6,... 
k=L 

(2.27) 

00 

x*Igktl,mI for k#m++; m=l,3, 5,7,. . . 
k=a 

(2.28) 

For this purpose we shall take advantage of some relationships obtained in paper [14]. 
For distinction these relationships are designated by a serial number with an asterisk. 

According to [14] the following relationships apply : 

&,m = gh-2.m-2 + gl,rng&dv gk,m = gk-l,m-1 

for odd k and m. In addition to this we introduce for even indices k and m Eq. 

2m + ’ g2k,2mc 2(m-k)+1 
(-1)” C_‘,r(k) (-1)” C_‘,;m) 

(2.29*) 

(2.30*) 

and also the following expressions for sums: 

2, gk, m, = - (-l)l’am c_t,r(l”m) + 25 [&,9 

s* 1 gk, m 1 = 2 ““y’ [ C_I,,“‘]~ 

(2.31* ) 

(2.32*) 
k=l “=I3 
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As before, an asterisk to the right of the summation denotes that the index of summa- 

tion takes on either even or odd values. It is necessary to keep in mind that &+s,~ # 0 
From the obvious equation (C,cl,(o, = 1, c.$i = - l/s) 

~--i)“C~~~~~=~~(1 ++)***(t~--i ++)>O for n;pi (2.33.) 

the following inequalities follow directly 

1 c_*,p I< 1 c_lp-l) 1 (n 2 4) (2.34j 

(a) 1 C-V?’ I < +- fn a $1. fibI 1 c-v!n)I> & (a> $1 (2.35) 

Relationships (2.29O) - (2.33 *) and inequalities (2.34) and (2.35) will be needed 

later. 
let us proceed to the analysis of infinite systems of linear algebraic equations (2.25) 

and (2.26).. 
It is known 113) that for the system of infinite equations (2.25) (or (-2.26)) to be com- 

pletely regular it is necessary that 00 

M*= 
I tm + 11 I a? Qm+s, m I k=l 

z* 1 gk+t, m 1 < 1 (2.36) 

for all values of m = .O, 2, 4, 6,... and k # m + 1. In particular, it must be that 

MaC1. 
Changing in Eq. (2.36) the index of summation k + 1 to n and using relationship 

(2.31’). we obtain 

M”=T(m+*)la?! fg 0 
m+2,ml /i.lP..mI-Igm+smI}= (2i37) 

?&=a 

= 1 (m + 1) / alo + g,+*, m r { 
%rn 

L- (-‘pm ‘+ (Srn) + 2 x f C_*,!“JS - 1 g 
Y=o 

mts, ,m l}G 
for all values m = 0, 2, 4, 6 ,... 

From Eq, (2.37) it follows immediately that 

In this manner in the following examination of condition (2.36) or (2.37) for the 
infinite system of equations (2.25) it is meaningful to take a,& < 1.Simultaneously 
we note that the denominator in Expression (2.37). i.e. 

is by virtue of inequalit/ (‘2.34) a monotonically decreasing function of! m (Nm > 0) 
which reaches its minimum value No = ‘Is for m = O.In this connection the inequa- 

lity gm4a,m < 0 always holds. 
Then the condition (2.37) can be written in the form 

*I,m 

since N, > 0 then, consequently, 

lNml =q+gm+*,,=* -lgWs,,~ 
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Now condition (2.40) is written in the form of an inequality placed on the quantity 
ah,. From (2.40) we have directly %m 

& < Hm = (m + 1) {- (-lpm C_,,~ml + 2 2 [C_n,j”‘]a}-L (2.41) 
“=0 

This inequality must hold for m = 0, 2, 4, 6 ,... 
In this manner, if the quantity oh0 satisfies inequality (2.41) for all values tt1 rt 0, 

2, 4, 6, 8, then in this case the infinite system of linear equations (2.25) will be com- 
pletely regular. 

From inequality (2.41) immediately follows the result that a&,, < 1 for m = 0, as 
obtained earlier. 

Therefore it remains to be shown whether for a&, < 1 the condition (2.41) will be 

preserved for all remaining values of m = 2, 4, 6, 8 ,. . . , i.e. the condition for which 
the infinite system of equations (2.25) is completely regular, or whether it will be neces- 
sary in this case to impose stronger restictions on the quantity, ah,. It is proved below 
that for aho ( 1 the condition (2.41) is also satisfied for all other values of m = 2, 
4, 6, 8,. . . , i. e. the infinite system of linear equations will be completely regular if 

only a& < 1. In fact, we introduce the notation 
‘1.m 

A, = - (-l)“*m C_,,.(“zm) -1 2 2 [c_,,r(Y)]a (2.42) 

Using inequalities (2.35) we can show that 

Amdm'2+8m-4 4m 
(2.43) 

for all values m = 2, 4, 6, 8,. . . It is apparent that ma + 8m - 4 > 0 for all 

values m = 2, 4, 6, 8 ,... 
On the other hand we have by virtue of inequalities (2.43) and (2.41) 

H -F 
m-i-2, 4m(m+l) 

m- = O(m) 
m 'm2+8m-4 

for all values m = 2, 4, 6, 8 ,... 
Therefore if aha’will satidfy the inequality 

(2.44) 

(2.45) 

the condition (2.41) will be satisfied all the more for values m = 2,4,6, 8,. . . 
Now let us examine fj (m) as a function of m. This function has a minimum for 

m> 1. In fact 

has one positive root which is between 1 and 2. Thereforemin0 (m)in case of discrete 
integer values of m = 2, 4, 6, 8, . . . . is achieved for m = 2 as a result of the mono- 
tonic character of function 8 (m), i. e. the following sufficient conditions holds for the 
infinite system of equations (2.25) to be completely regular: 

ah0 < 
4m (m + 1) I 3 

mP+6m-4 m=a= -;Z- 
(2.47) 

Thus for $I,,-, ( 3/s the condition (2.41 ) is automatically satisfied for values of 
m = 2, 4, 6, 8 ,... Consequently the infinite system of linear equations (2.25) will be 
completely regular for aho < 1. 

In an analogous manner it is not difficult to prove that for this condition, i.e. for 
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a&, < 1 the infinite system of linear equations (2.26) will also be completely regular. 
In conclusion we note that from the entire development of the proof presented above 

for the statement that the infinite system of equations (2.25) or (2.26) is completely 
regular it follows simultaneously that if ah, > 1, then these systems will be quasi- 

completely regular and for each fixed value ah, (of course, under condition that 
ah,>1)wecanalwayspointoutthatvalueofm(m=2,4,6,...orm=1,3, 

5 , . . .) ,, starting with which the infinite system of equations will be completely regular. 
Simulataneously it is directly evident from the structure of Eqs. (2.25) and (2.26) that 
the free terms of these equations are bounded and tend to zero for m --t 00 as _o (m-j). 
Thus, having constructed for finding coefficients a completely regular (for ah, < 1) 

and a quasi-completely regular infinite system of linear equations with bounded free 

terms, we can find with required accuracy the values of coefficients which enter into 

Eq. (1.38) or (1.39) or (1.42) for the contact stress ‘t (5). 
The author ‘is grateful to D. I. Sherman for discussion of this work and for useful com- 

ments. 
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